Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell Rep Methods ; 1(6): 100069, 2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1763677

ABSTRACT

The compounding challenges of low signal, high background, and uncertain targets plague many metagenomic sequencing efforts. One solution has been DNA capture, wherein probes are designed to hybridize with target sequences, enriching them in relation to their background. However, balancing probe depth with breadth of capture is challenging for diverse targets. To find this balance, we have developed the HUBDesign pipeline, which makes use of sequence homology to design probes at multiple taxonomic levels. This creates an efficient probe set capable of simultaneously and specifically capturing known and related sequences. We validated HUBDesign by generating probe sets targeting the breadth of coronavirus diversity, as well as a suite of bacterial pathogens often underlying sepsis. In separate experiments demonstrating significant, simultaneous enrichment, we captured SARS-CoV-2 and HCoV-NL63 in a human RNA background and seven bacterial strains in human blood. HUBDesign (https://github.com/zacherydickson/HUBDesign) has broad applicability wherever there are multiple organisms of interest.

2.
J Virol Methods ; 293: 114146, 2021 07.
Article in English | MEDLINE | ID: covidwho-1164163

ABSTRACT

While the whole genomic sequence of SARS-CoV-2 had been revealed, it was also demonstrated that the genome of SARS-CoV-2 exhibits identity with the genome of SARS-CoV and MERS-CoV with ratios of 80 % and 50 % respectively. In the light of SARS-CoV-2 infection and mortality data, diagnosis and treatment of COVID-19 came into prominence around the world. As such many RT-PCR kits have been developed by biotechnology scientists. However viruses are fast mutating organisms and in order to increase accuracy, feasibility in long term and avoid the off target results of RT-PCR assays, regions of viral genome with low mutation rate and designing of primers targeting these regions are quite important. In this scope, we are presenting a novel algorithm that could be used for finding low mutation rate regions of SARS-CoV-2 and primers that were designed according to findings from our algorithm in this study.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , DNA Primers , Mutation , SARS-CoV-2/genetics , Algorithms , Humans , Prospective Studies , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL